卡方检验是一种确定两个分类变量之间是否存在显着相关性的统计方法。 这两个变量应该来自相同的人口,他们应该是类似 - 是/否,男/女,红/绿等。
例如,我们可以建立一个观察人们的冰淇淋购买模式的数据集,并尝试将一个人的性别与他们喜欢的冰淇淋的味道相关联。 如果发现相关性,我们可以通过了解访问的人的性别的数量来计划适当的味道库存。
chisq.test(data)
以下是所使用的参数的描述 -
data是以包含观察中变量的计数值的表的形式的数据。
我们将在“MASS”图书馆中获取Cars93数据,该图书馆代表1993年不同型号汽车的销售额。
library("MASS") print(str(Cars93))
当我们执行上面的代码,它产生以下结果 -
'data.frame': 93 obs. of 27 variables: $ Manufacturer : Factor w/ 32 levels "Acura","Audi",..: 1 1 2 2 3 4 4 4 4 5 ... $ Model : Factor w/ 93 levels "100","190E","240",..: 49 56 9 1 6 24 54 74 73 35 ... $ Type : Factor w/ 6 levels "Compact","Large",..: 4 3 1 3 3 3 2 2 3 2 ... $ Min.Price : num 12.9 29.2 25.9 30.8 23.7 14.2 19.9 22.6 26.3 33 ... $ Price : num 15.9 33.9 29.1 37.7 30 15.7 20.8 23.7 26.3 34.7 ... $ Max.Price : num 18.8 38.7 32.3 44.6 36.2 17.3 21.7 24.9 26.3 36.3 ... $ MPG.city : int 25 18 20 19 22 22 19 16 19 16 ... $ MPG.highway : int 31 25 26 26 30 31 28 25 27 25 ... $ AirBags : Factor w/ 3 levels "Driver & Passenger",..: 3 1 2 1 2 2 2 2 2 2 ... $ DriveTrain : Factor w/ 3 levels "4WD","Front",..: 2 2 2 2 3 2 2 3 2 2 ... $ Cylinders : Factor w/ 6 levels "3","4","5","6",..: 2 4 4 4 2 2 4 4 4 5 ... $ EngineSize : num 1.8 3.2 2.8 2.8 3.5 2.2 3.8 5.7 3.8 4.9 ... $ Horsepower : int 140 200 172 172 208 110 170 180 170 200 ... $ RPM : int 6300 5500 5500 5500 5700 5200 4800 4000 4800 4100 ... $ Rev.per.mile : int 2890 2335 2280 2535 2545 2565 1570 1320 1690 1510 ... $ Man.trans.avail : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 1 1 1 1 1 ... $ Fuel.tank.capacity: num 13.2 18 16.9 21.1 21.1 16.4 18 23 18.8 18 ... $ Passengers : int 5 5 5 6 4 6 6 6 5 6 ... $ Length : int 177 195 180 193 186 189 200 216 198 206 ... $ Wheelbase : int 102 115 102 106 109 105 111 116 108 114 ... $ Width : int 68 71 67 70 69 69 74 78 73 73 ... $ Turn.circle : int 37 38 37 37 39 41 42 45 41 43 ... $ Rear.seat.room : num 26.5 30 28 31 27 28 30.5 30.5 26.5 35 ... $ Luggage.room : int 11 15 14 17 13 16 17 21 14 18 ... $ Weight : int 2705 3560 3375 3405 3640 2880 3470 4105 3495 3620 ... $ Origin : Factor w/ 2 levels "USA","non-USA": 2 2 2 2 2 1 1 1 1 1 ... $ Make : Factor w/ 93 levels "Acura Integra",..: 1 2 4 3 5 6 7 9 8 10 ...
上述结果表明数据集有很多因素变量,可以被认为是分类变量。 对于我们的模型,我们将考虑变量“AirBags”和“Type”。 在这里,我们的目标是找出所售的汽车类型和安全气囊类型之间的任何显着的相关性。 如果观察到相关性,我们可以估计哪种类型的汽车可以更好地卖什么类型的气囊。
# Load the library. library("MASS") # Create a data frame from the main data set. car.data <- data.frame(Cars93$AirBags, Cars93$Type) # Create a table with the needed variables. car.data = table(Cars93$AirBags, Cars93$Type) print(car.data) # Perform the Chi-Square test. print(chisq.test(car.data))
当我们执行上面的代码,它产生以下结果 -
Compact Large Midsize Small Sporty Van Driver & Passenger 2 4 7 0 3 0 Driver only 9 7 11 5 8 3 None 5 0 4 16 3 6 Pearson's Chi-squared test data: car.data X-squared = 33.001, df = 10, p-value = 0.0002723 Warning message: In chisq.test(car.data) : Chi-squared approximation may be incorrect
结果显示p值小于0.05,这表明字符串相关。