-

复数和分数

Julia 提供复数和分数类型,并对其支持所有的标准数学运算 。对不同的数据类型进行混合运算时,无论是基础的还是复合的,都会自动使用类型转换和类型提升

复数

全局变量 im 即复数 i ,表示 -1 的正平方根。因为 i 经常作为索引变量,所以不使用它来代表复数了。Julia 允许数值文本作为代数系数 ,也适用于复数:

julia> 1 + 2im
1 + 2im

可以对复数做标准算术运算:

julia> (1 + 2im)*(2 - 3im)
8 + 1im

julia> (1 + 2im)/(1 - 2im)
-0.6 + 0.8im

julia> (1 + 2im) + (1 - 2im)
2 + 0im

julia> (-3 + 2im) - (5 - 1im)
-8 + 3im

julia> (-1 + 2im)^2
-3 - 4im

julia> (-1 + 2im)^2.5
2.7296244647840084 - 6.960664459571898im

julia> (-1 + 2im)^(1 + 1im)
-0.27910381075826657 + 0.08708053414102428im

julia> 3(2 - 5im)
6 - 15im

julia> 3(2 - 5im)^2
-63 - 60im

julia> 3(2 - 5im)^-1.0
0.20689655172413796 + 0.5172413793103449im

类型提升机制保证了不同类型的运算对象能够在一起运算:

julia> 2(1 - 1im)
2 - 2im

julia> (2 + 3im) - 1
1 + 3im

julia> (1 + 2im) + 0.5
1.5 + 2.0im

julia> (2 + 3im) - 0.5im
2.0 + 2.5im

julia> 0.75(1 + 2im)
0.75 + 1.5im

julia> (2 + 3im) / 2
1.0 + 1.5im

julia> (1 - 3im) / (2 + 2im)
-0.5 - 1.0im

julia> 2im^2
-2 + 0im

julia> 1 + 3/4im
1.0 - 0.75im

注意: 3/4im == 3/(4*im) == -(3/4*im) ,因为文本系数比除法优先。

处理复数的标准函数:

julia> real(1 + 2im)
1

julia> imag(1 + 2im)
2

julia> conj(1 + 2im)
1 - 2im

julia> abs(1 + 2im)
2.23606797749979

julia> abs2(1 + 2im)
5

julia> angle(1 + 2im)
1.1071487177940904

通常, 复数的绝对值( abs )是它到零的距离。 函数 abs2 返回绝对值的平方, 特别地用在复数上来避免开根。angle 函数返回弧度制的相位(即 argument 或 arg )。 所有的基本函数也可以应用在复数上:

julia> sqrt(1im)
0.7071067811865476 + 0.7071067811865475im

julia> sqrt(1 + 2im)
1.272019649514069 + 0.7861513777574233im

julia> cos(1 + 2im)
2.0327230070196656 - 3.0518977991518im

julia> exp(1 + 2im)
-1.1312043837568135 + 2.4717266720048188im

julia> sinh(1 + 2im)
-0.4890562590412937 + 1.4031192506220405im

作用在实数上的数学函数,返回值一般为实数;作用在复数上的,返回值为复数。例如, sqrt-1-1 + 0im 的结果不同,即使 -1 == -1 + 0im

julia> sqrt(-1)
ERROR: DomainError
sqrt will only return a complex result if called with a complex argument.
try sqrt(complex(x))
 in sqrt at math.jl:131

julia> sqrt(-1 + 0im)
0.0 + 1.0im

代数系数不能用于使用变量构造复数。乘法必须显式的写出来:

julia> a = 1; b = 2; a + b*im
1 + 2im

但是, 不 推荐使用上面的方法。推荐使用 complex 函数构造复数:

julia> complex(a,b)
1 + 2im

这种构造方式避免了乘法和加法操作。

InfNaN 也可以参与构造复数 (参考特殊的浮点数部分):

julia> 1 + Inf*im
1.0 + Inf*im

julia> 1 + NaN*im
1.0 + NaN*im

分数 Julia 有分数类型。使用 // 运算符构造分数:

julia> 2//3
2//3

如果分子、分母有公约数,将自动约简至最简分数,且分母为非负数:

julia> 6//9
2//3

julia> -4//8
-1//2

julia> 5//-15
-1//3

julia> -4//-12
1//3

约简后的分数都是唯一的,可以通过分别比较分子、分母来确定两个分数是否相等。使用 numden 函数来取得约简后的分子和分母:

julia> num(2//3)
2

julia> den(2//3)
3

其实并不需要比较分数和分母,我们已经为分数定义了标准算术和比较运算:

julia> 2//3 == 6//9
true

julia> 2//3 == 9//27
false

julia> 3//7 < 1//2
true

julia> 3//4 > 2//3
true

julia> 2//4 + 1//6
2//3

julia> 5//12 - 1//4
1//6

julia> 5//8 * 3//12
5//32

julia> 6//5 / 10//7
21//25

分数可以简单地转换为浮点数:

julia> float(3//4)
0.75

分数到浮点数的转换遵循,对任意整数 ab ,除 a == 0b == 0 之外,有:

julia> isequal(float(a//b), a/b)
true

可以构造结果为 Inf 的分数:

julia> 5//0
1//0

julia> -3//0
-1//0

julia> typeof(ans)
Rational{Int64} (constructor with 1 method)

但不能构造结果为 NaN 的分数:

julia> 0//0
ERROR: invalid rational: 0//0
 in Rational at rational.jl:6
 in // at rational.jl:15

类型提升系统使得分数类型与其它数值类型交互非常简单:

julia> 3//5 + 1
8//5

julia> 3//5 - 0.5
0.09999999999999998

julia> 2//7 * (1 + 2im)
2//7 + 4//7*im

julia> 2//7 * (1.5 + 2im)
0.42857142857142855 + 0.5714285714285714im

julia> 3//2 / (1 + 2im)
3//10 - 3//5*im

julia> 1//2 + 2im
1//2 + 2//1*im

julia> 1 + 2//3im
1//1 - 2//3*im

julia> 0.5 == 1//2
true

julia> 0.33 == 1//3
false

julia> 0.33 < 1//3
true

julia> 1//3 - 0.33
0.0033333333333332993