-

CROSS 运算符计算两个或多个关系的向量积。本章将以示例说明如何在Pig Latin中使用cross运算符。

语法

下面给出了 CROSS 运算符的语法。

grunt> Relation3_name = CROSS Relation1_name, Relation2_name;

假设在HDFS的 /pig_data/ 目录中有两个文件,即 customers.txt orders.txt ,如下所示。

customers.txt

1,Ramesh,32,Ahmedabad,2000.00
2,Khilan,25,Delhi,1500.00
3,kaushik,23,Kota,2000.00
4,Chaitali,25,Mumbai,6500.00
5,Hardik,27,Bhopal,8500.00
6,Komal,22,MP,4500.00
7,Muffy,24,Indore,10000.00

orders.txt

102,2009-10-08 00:00:00,3,3000
100,2009-10-08 00:00:00,3,1500
101,2009-11-20 00:00:00,2,1560
103,2008-05-20 00:00:00,4,2060

将这两个文件加载到Pig中,通过关系 customers  orders,如下所示。

grunt> customers = LOAD 'hdfs://localhost:9000/pig_data/customers.txt' USING PigStorage(',')
   as (id:int, name:chararray, age:int, address:chararray, salary:int);
  
grunt> orders = LOAD 'hdfs://localhost:9000/pig_data/orders.txt' USING PigStorage(',')
   as (oid:int, date:chararray, customer_id:int, amount:int);

现在让我们使用 cross 运算符获得这两个关系的向量积,如下所示。

grunt> cross_data = CROSS customers, orders;

验证

使用 DUMP 运算符验证关系 cross_data ,如下所示。

grunt> Dump cross_data;

输出

它将产生以下输出,显示关系 cross_data 的内容。

(7,Muffy,24,Indore,10000,103,2008-05-20 00:00:00,4,2060) 
(7,Muffy,24,Indore,10000,101,2009-11-20 00:00:00,2,1560) 
(7,Muffy,24,Indore,10000,100,2009-10-08 00:00:00,3,1500) 
(7,Muffy,24,Indore,10000,102,2009-10-08 00:00:00,3,3000) 
(6,Komal,22,MP,4500,103,2008-05-20 00:00:00,4,2060) 
(6,Komal,22,MP,4500,101,2009-11-20 00:00:00,2,1560) 
(6,Komal,22,MP,4500,100,2009-10-08 00:00:00,3,1500) 
(6,Komal,22,MP,4500,102,2009-10-08 00:00:00,3,3000) 
(5,Hardik,27,Bhopal,8500,103,2008-05-20 00:00:00,4,2060) 
(5,Hardik,27,Bhopal,8500,101,2009-11-20 00:00:00,2,1560) 
(5,Hardik,27,Bhopal,8500,100,2009-10-08 00:00:00,3,1500) 
(5,Hardik,27,Bhopal,8500,102,2009-10-08 00:00:00,3,3000) 
(4,Chaitali,25,Mumbai,6500,103,2008-05-20 00:00:00,4,2060) 
(4,Chaitali,25,Mumbai,6500,101,2009-20 00:00:00,4,2060) 
(2,Khilan,25,Delhi,1500,101,2009-11-20 00:00:00,2,1560) 
(2,Khilan,25,Delhi,1500,100,2009-10-08 00:00:00,3,1500) 
(2,Khilan,25,Delhi,1500,102,2009-10-08 00:00:00,3,3000) 
(1,Ramesh,32,Ahmedabad,2000,103,2008-05-20 00:00:00,4,2060) 
(1,Ramesh,32,Ahmedabad,2000,101,2009-11-20 00:00:00,2,1560) 
(1,Ramesh,32,Ahmedabad,2000,100,2009-10-08 00:00:00,3,1500) 
(1,Ramesh,32,Ahmedabad,2000,102,2009-10-08 00:00:00,3,3000)-11-20 00:00:00,2,1560) 
(4,Chaitali,25,Mumbai,6500,100,2009-10-08 00:00:00,3,1500) 
(4,Chaitali,25,Mumbai,6500,102,2009-10-08 00:00:00,3,3000) 
(3,kaushik,23,Kota,2000,103,2008-05-20 00:00:00,4,2060) 
(3,kaushik,23,Kota,2000,101,2009-11-20 00:00:00,2,1560) 
(3,kaushik,23,Kota,2000,100,2009-10-08 00:00:00,3,1500) 
(3,kaushik,23,Kota,2000,102,2009-10-08 00:00:00,3,3000) 
(2,Khilan,25,Delhi,1500,103,2008-05-20 00:00:00,4,2060) 
(2,Khilan,25,Delhi,1500,101,2009-11-20 00:00:00,2,1560) 
(2,Khilan,25,Delhi,1500,100,2009-10-08 00:00:00,3,1500)
(2,Khilan,25,Delhi,1500,102,2009-10-08 00:00:00,3,3000) 
(1,Ramesh,32,Ahmedabad,2000,103,2008-05-20 00:00:00,4,2060) 
(1,Ramesh,32,Ahmedabad,2000,101,2009-11-20 00:00:00,2,1560) 
(1,Ramesh,32,Ahmedabad,2000,100,2009-10-08 00:00:00,3,1500) 
(1,Ramesh,32,Ahmedabad,2000,102,2009-10-08 00:00:00,3,3000)